139 research outputs found

    Identification of vascular endothelial growth factor receptor 3 (VEGFR3) as an in vitro and in vivo substrate of the Alzheimer's Disease linked protease BACE2

    Get PDF
    The protease ß-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) is a key drug target in Alzheimer’s disease (AD). It catalyzes the first step in the generation of the pathogenic amyloid ß (Aß) peptide and its inhibition is therefore a promising approach to prevent or delay the onset of AD. To date however, most inhibitory compounds do not discriminate between BACE1 and its close non-amyloidogenic homologue BACE2 and therefore may lead to undesired off target effects, resulting from BACE2 biology. Therefore, future compounds require a higher selectivity for BACE1 and a biomarker is required to confirm unimpaired in vivo BACE2 activity. To replace a long lasting depigmentation assay, which is the current standard for in vivo BACE2 activity monitoring, the blood plasma of BACE2 knockout mice (B2KO) was screened and the tyrosine kinase receptor Vascular Endothelial Growth Factor 3 (VEGFR3) was identified as a putative BACE2 substrate. Subsequently, VEGFR3 was thoroughly validated as an in vitro and in vivo BACE2 substrate and the BACE2 cleavage site was determined. In direct comparison to the pigmentation readout, plasma VEGFR3 performed superior and displayed higher sensitivity and lower variance. Importantly, reduction of VEGFR3 was also detectable in the plasma of BACE inhibitor treated non-human primates (NHP) and clinical trial participants, highlighting potential for applicability in the clinical context. To test whether BACE2 cleavage may be a novel mechanism to control VEGFR3 function, downstream events of VEGFR3 signaling were monitored in primary lymphatic endothelial cells (LECs). Impairment of BACE2 dependent VEGFR3 processing was accompanied by increased activation of the VEGFR3 dependent pathways AKT and ERK and resulted into enhanced transcription of the VEGFR3 inducible genes (FOXC2) and Delta-like 4 (DLL4). As a consequence, alterations in the morphological structure and drainage efficiency of lymphatic vessels and cannot be excluded in the periphery and central nervous system (CNS). Future developments in the BACE inhibitor field need to consider these implications and plasma VEGFR3 levels may be used to control for possible of target effects from BACE2 inhibition

    In vitro and in vivo effects of SerpinA1 on the modulation of Transthyretin proteolysis

    Get PDF
    Transthyretin (TTR) proteolysis has been recognized as a complementary mechanism contributing to transthyretin-related amyloidosis (ATTR amyloidosis). Accordingly, amyloid deposits can be composed mainly of full-length TTR or contain a mixture of both cleaved and full-length TTR, particularly in the heart. The fragmentation pattern at Lys48 suggests the involvement of a serine protease, such as plasmin. The most common TTR variant, TTR V30M, is susceptible to plasmin-mediated proteolysis, and the presence of TTR fragments facilitates TTR amyloidogenesis. Recent studies revealed that the serine protease inhibitor, SerpinA1, was differentially expressed in hepatocyte-like cells (HLCs) from ATTR patients. In this work, we evaluated the effects of SerpinA1 on in vitro and in vivo modulation of TTR V30M proteolysis, aggregation, and deposition. We found that plasmin-mediated TTR proteolysis and aggregation are partially inhibited by SerpinA1. Furthermore, in vivo downregulation of SerpinA1 increased TTR levels in mice plasma and deposition in the cardiac tissue of older animals. The presence of TTR fragments was observed in the heart of young and old mice but not in other tissues following SerpinA1 knockdown. Increased proteolytic activity, particularly plasmin activity, was detected in mice plasmas. Overall, our results indicate that SerpinA1 modulates TTR proteolysis and aggregation in vitro and in vivo.This research was funded by COMPETE 2020 of PT2020 through the European Regional Development Fund (ERDF), “NETDIAMOND—New Targets in DIAstolic heart failure: from coMOrbidities to persoNalizeD medicine” project financed by the European Structural and Investment Funds (ESIF), through the Programa Operacional Regional (POCI-01-0145-FEDER-016385) and HEALTHUNORTE: Setting-up biobanks and regenerative medicine strategies to boost research in cardiovascular, musculoskeletal, neurological, oncological, immunological, and infectious diseases, NORTE- 01-0145-FEDER-000039. FB was supported by FCT—Fundação para a Ciência e Tecnologia/MEC— Ministério da Educação e Ciência with a PhD fellowship (SFRH/BD/123674/2016)

    Evaluation of Therapeutic Oligonucleotides for Familial Amyloid Polyneuropathy in Patient-Derived Hepatocyte-Like Cells

    Full text link
    Familial amyloid polyneuropathy (FAP) is caused by mutations of the transthyretin (TTR) gene, predominantly expressed in the liver. Two compounds that knockdown TTR, comprising a small interfering RNA (siRNA; ALN-TTR-02) and an antisense oligonucleotide (ASO; IONIS-TTRRx), are currently being evaluated in clinical trials. Since primary hepatocytes from FAP patients are rarely available for molecular analysis and commercial tissue culture cells or animal models lack the patient-specific genetic background, this study uses primary cells derived from urine of FAP patients. Urine-derived cells were reprogrammed to induced pluripotent stem cells (iPSCs) with high efficiency. Hepatocyte-like cells (HLCs) showing typical hepatic marker expression were obtained from iPSCs of the FAP patients. TTR mRNA expression of FAP HLCs almost reached levels measured in human hepatocytes. To assess TTR knockdown, siTTR1 and TTR-ASO were introduced to HLCs. A significant downregulation (>80%) of TTR mRNA was induced in the HLCs by both oligonucleotides. TTR protein present in the cell culture supernatant of HLCs was similarly downregulated. Gene expression of other hepatic markers was not affected by the therapeutic oligonucleotides. Our data indicate that urine cells (UCs) after reprogramming and hepatic differentiation represent excellent primary human target cells to assess the efficacy and specificity of novel compounds

    Anatomy in the Third Reich: An outline, part 1. National Socialist politics, anatomical institutions, and anatomists

    Full text link
    Although it is known that anatomists working in Germany during the Third Reich have used bodies of victims of the National Socialist (NS) regime for dissection and research, a comprehensive history of the anatomy in the Third Reich has not yet been written. Recent studies of the history of German anatomy departments during this time period provide material for a first outline of the subject matter. A historical review can help with the formulation of ethical foundations in modern anatomy. From the outset, the NS regime sought to reorganize German universities according to NS leadership principles and political goals. Many German academics, especially physicians and among them anatomists, followed these intentions with a voluntary “self-alignment” that encompassed their professional actions as well as their ethics. Currently, political information is available for 111 of 178 anatomists. Thirty-eight of the anatomists were dismissed for racial or political reasons, among them 10 chairmen of anatomy, whereas 35 of the anatomists were politically active members of one of the NS organizations. Over 70% of the chairmen of anatomical departments in the time period from 1941 to 1944 were members of NS organizations. Anatomists, as so many other physicians and academics, belonged both, to the group of victims of the regime, i.e., those being dismissed from their positions for racial and political reasons, and to the group of supporters and sometimes active perpetrators of NS policies. Clin. Anat. 22:883–893, 2009. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64328/1/20872_ftp.pd

    The psychological science accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    The Psychological Science Accelerator's COVID-19 rapid-response dataset

    Get PDF

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges
    corecore